MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading.

نویسندگان

  • Long Lu
  • Hui Lu
  • Jeffrey Skolnick
چکیده

In this postgenomic era, the ability to identify protein-protein interactions on a genomic scale is very important to assist in the assignment of physiological function. Because of the increasing number of solved structures involving protein complexes, the time is ripe to extend threading to the prediction of quaternary structure. In this spirit, a multimeric threading approach has been developed. The approach is comprised of two phases. In the first phase, traditional threading on a single chain is applied to generate a set of potential structures for the query sequences. In particular, we use our recently developed threading algorithm, PROSPECTOR. Then, for those proteins whose template structures are part of a known complex, we rethread on both partners in the complex and now include a protein-protein interfacial energy. To perform this analysis, a database of multimeric protein structures has been constructed, the necessary interfacial pairwise potentials have been derived, and a set of empirical indicators to identify true multimers based on the threading Z-score and the magnitude of the interfacial energy have been established. The algorithm has been tested on a benchmark set comprised of 40 homodimers, 15 heterodimers, and 69 monomers that were scanned against a protein library of 2478 structures that comprise a representative set of structures in the Protein Data Bank. Of these, the method correctly recognized and assigned 36 homodimers, 15 heterodimers, and 65 monomers. This protocol was applied to identify partners and assign quaternary structures of proteins found in the yeast database of interacting proteins. Our multimeric threading algorithm correctly predicts 144 interacting proteins, compared to the 56 (26) cases assigned by PSI-BLAST using a (less) permissive E-value of 1 (0.01). Next, all possible pairs of yeast proteins have been examined. Predictions (n = 2865) of protein-protein interactions are made; 1138 of these 2865 interactions have counterparts in the Database of Interacting Proteins. In contrast, PSI-BLAST made 1781 predictions, and 1215 have counterparts in DIP. An estimation of the false-negative rate for yeast-predicted interactions has also been provided. Thus, a promising approach to help assist in the assignment of protein-protein interactions on a genomic scale has been developed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimeric threading-based prediction of protein-protein interactions on a genomic scale: application to the Saccharomyces cerevisiae proteome.

MULTIPROSPECTOR, a multimeric threading algorithm for the prediction of protein-protein interactions, is applied to the genome of Saccharomyces cerevisiae. Each possible pairwise interaction among more than 6000 encoded proteins is evaluated against a dimer database of 768 complex structures by using a confidence estimate of the fold assignment and the magnitude of the statistical interfacial p...

متن کامل

Multimeric threading-based prediction of proteinâ•fiprotein interactions on a genomic scale: Application to the Saccharomyces cerevisiae proteome

Multimeric threading-based prediction of protein–protein interactions on a genomic scale: Application to the Saccharomyces cerevisiae proteome.

متن کامل

Development of unified statistical potentials describing protein-protein interactions.

A residue-based and a heavy atom-based statistical pair potential are developed for use in assessing the strength of protein-protein interactions. To ensure the quality of the potentials, a nonredundant, high-quality dimer database is constructed. The protein complexes in this dataset are checked by a literature search to confirm that they form multimers, and the pairwise amino acid preference ...

متن کامل

Benchmarking of dimeric threading and structure refinement.

The understanding of protein-protein interactions is a major goal in the postgenomic era. The prediction of interaction from sequence and the subsequent generation of full-length dimeric models is therefore of great interest especially because the number of structurally characterized protein-protein complexes is sparse. A quality assessment of a benchmark comprised of 170 weakly homologous dime...

متن کامل

Discovering Domains Mediating Protein Interactions

Background: Protein-protein interactions do not provide any direct information re‌garding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting do‌main pairs. However they do not consider the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 49 3  شماره 

صفحات  -

تاریخ انتشار 2002